
Parallel processing power topology constantly operates in parallel with the inverter and corrects the power waveform at high speed.
Although SANYO DENKI’s parallel processing UPSs supply raw grid power during normal conditions, they are equipped with high-speed AC switches that clean the “dirty” grid power and prevent the upstream flow of power during outages. Differing from the switches found in passive standby UPSs, this system can deliver inverter output with no transfer time.
The capacitor in the built-in bi-directional inverter compensates voltage surges smaller than a half-cycle.
Since battery power isn’t used to compensate the voltage, the capacitor helps to limit the number of charge cycles and slow battery wear.
In addition, parallel processing topology features an active filter function that prevents harmonics from flowing back into the grid. The bi-directional inverter detects harmonics from electric equipment and releases counteractive inverse waveforms to negate the harmful effects of harmonics.
SANYO DENKI’s parallel processing UPSs offer low power consumption while delivering switching without breaks. In addition, since power is not constantly flowing through the inverter, when choosing a UPS, users can select the capacity without worrying about inrush current. It wouldn’t be an exaggeration to say it combines the best qualities of standby and online UPSs.
SANYO DENKI’s unique brand of parallel processing UPSs offer reduced power consumption, a patented cooling method, and zero transfer time.
Up to now, we have learned about three types of topologies. Users have to take costs, not just power protection performance, into consideration when selecting a UPS. However, to mitigate the risks of power outages, some utilities offer contracts with options for dual-power systems. In such cases, power protection devices that specialize in protecting loads from interruptions (momentary outages) and dips (instantaneous voltage dips) may be sufficient.
Date of publication: October 10, 2017